Skip to contents

Samples from the posterior distribution

Usage

posterior_samples_multitrait(
  beta,
  se,
  eaf,
  R,
  k,
  omega,
  u,
  n,
  maxsize,
  tau0,
  r0,
  niter,
  burnin,
  p,
  seed = 456,
  excl.burnin = TRUE,
  a0 = 1,
  b0 = NULL,
  inds0 = NULL,
  standardize = TRUE,
  verbose = TRUE,
  clump = TRUE,
  clump_r2 = 0.99^2,
  check_ld = FALSE,
  ala = NULL
)

Arguments

beta

Vector of effect sizes.

se

Vector of standard errors.

eaf

Vector of effect allele frequencies.

R

LD matrix.

maxsize

The maximum number of causal variants.

tau0

Parameter tau.

r0

Parameter $r$.

niter

Number of iterations.

burnin

Number of burn-in samples.

p

Number of variants.

seed

Random seed.

excl.burnin

Should the burn-in be excluded?

a0

Hyperparameter a for the model size prior.

b0

Hyperparameter b for the model size prior.

inds0

Initial model indices (not used).

standardize

Should the effect sizes be standardised? Defaults to TRUE.

verbose

Verbose output.

clump

Whether to clump extremely highly correlated variants.

clump_r2

Clumping threshold for extremely highly correlated variants.

check_ld

Should the Z-scores be checked for LD discrepancy?

ala

Whether Approximate Laplace should be used?

Value

List.